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1. Phys: Condens. Matter 4 (1992) 9441-9446. Printed in the UK 

The influence of magnetic fields on the interphase boundary 
dynamics of ferroelectric phase transitions 

A Gordont and P Wyder 
Max-Planck Institul fiir Festkorpetforschung, Hochfeld Magnetlabor, BP 166X, F-38042. 
Grenoble CEdex, France 

Reeived I1  May 1992 

Abstract A general description of the thermo-induced dynamics of the inlerphase 
boundaries in femlec lr irs  is proposed. The influence of applied magnetic Gelds on the 
velocity and width of the inlerphase boundaries is considered. 

Dielectric measurements (Wagner and Bauerle 1981; Lawless et a1 1982) have shown 
that there is a considerable effect of the applied magnetic field on the phase 
transition temperature in ferroelectric perovskites. The cause of this influence is 
the magnetoelectric effect (Astrov 19M), Fblen et a1 1961, Clin et a1 1988). This 
effect is caused microscopically by the influence of the magnetic field on the orbital 
wave functions determining the polarizability (Wagner and Biiuerle 1981). Since 
many ferroelectric phase transitions, in particular in perovskites, are first-order ones, 
it is worthwhile to consider such peculiarities of the first-order phase transitions 
as growth processes related to the dynamics of the interphase boundaries and the 
influence of magnetic field on them. The temperature-induced kinetics of the first- 
order ferroelectric phase transitions has been extensively studied in perovskites both 
experimentally (Surowiak el a1 1978a, b, Yufatova et al 1980, Dec 1986, 1988, 1989, 
Dec and Yurkevich 1990) and theoretically (Gordon 1983, 1986, 1987, 1991). Recently 
the first attempt at studying the magnetic-field-induced kinetics of the ferroelectric 
phase transitions has been made by Gordon and Wyder (1992). However, the 
case under consideration is restricted by the werdamped motion of the interphase 
boundaly. In this work we propose a general description of the thermally induced 
interphase boundaly motion and study the influence of the applied magnetic field on 
the ferroelectric interphase boundaries. 

We start from the Ginzburg-Landau functional of the total free energy for uniaxial 
ferroelectrics 

where P is the polarization, f( P) is the free-energy density for a uniform system 
undergoing a first-order phase transition: 

f ( P )  = f a P z  - a b p  + i cP6 (2) 

t On sabbatical leave from: Depanment of Malhematics and Physics, Oranim, Haifa University, 36910 
livon. Ismel. 
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where coefficients b and e are positive, D is the positive coefficient of the 
inhomogeneity term, coefficient a is a temperaturedependent one: a = a’(T - To), 
and Tu is the stability limit of the paraelectric phase. 

Up to date the dynamics of ferroelectric interphase boundaries has been 
considered with the help of the time-dependent Ginzhurg-Landau equation for the 
evolution of spontaneous polarization (Gordon 1983, 1986). In this case we have the 
following equation: 

A Gordon and P w e r  

a P / a t  = - r 6 F / 6 P  (3) 

where r is the Landau-Khalatnikov aansport coefficient, which sets the time scale 
of the relaxation process and is assumed to depend non-critically on temperature; 
the term including the functional derivative 6 F / 6 P  is one tending to restore the 
value of P to its thermal equilibrium value; F is given by (1) and (2). However, 
this equation gives the overdamped motion of the interphase boundary. ’Ib consider 
a more general case we take into account the kinetic energy density. Then the 
Euler-Lagrange equation is given as follows: 

2 D a 2 P / a X 2 - p a 2 P / a t 2 - a P + b P 3 - ~ P S  = 0. (4) 

The Lagrangian density L = K - F, where K is the kinetic energy. We take K as 
follows: 

K = ip(6’P/at)2.  (5) 

We present the kinetic energy as the energy of oscillations of ions. It is assumed 
that the polarization in a ferroelectric is due to the displacement of a definite ion 
(Ginzhurg 1960). P = ner and p = m/ne2,  where z is the displacement of the ion, 
e is the effective charge, m is the effective mass, and n is the number of ions in unit 
volume. For the sake of simplicity we neglect the energy of elastic oscillations and 
elastic energy in (5 )  (see Gordon 1991). 

%king into account the damping term with (l/r) a P / a t  we obtain the following 
equation of motion: 

2 ~ a ~ ~ / a ~ ~ -  p a 2 P / a t 2 -  ( i / r ) a P / a t  - a P +  bp3 - C P ~  = 0. (6) 

For p = 0 we have the usual time-dependent Gmzburg-Landau equation describing 
the overdamped motion of the phase boundary (Gordon 1983). Substituting s = 
2‘ - v i  into (6) we have 

2 r ( D  - pv2/2)d2P/ds2  + v d P / d s  - r(aP- bP3 + cPS) = 0. (7) 

The partial solution of (7) is known (Gordon 1983). The ferroelectric interphase 
boundary is given by 

P = P u / [ l  + t ~ p ( - s / A ) ] ” ~  (8) 

where 

Pi = (b/2c)[l + (1  - h c / b  2 ) 112 1. (9) 
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Here we have new expressions for the interphase boundary width A and its velocity 
U: 

(10) 

(11) 

A = ~{D/a~(Tc-Tu)[1-36/8+(l-36/4)1/2](1+pq2/2)}  112 

v = qD1"/(l + pq2/2)'/' 

q = 2 r [ n ' ( ~ , - ~ u ) ] 1 1 Z { 6 -  3 [ i + ( i - 3 6 / 4 ) 1 / 2 ] ) / [ i - 3 6 / 8 + ( i - 3 6 / 4 )  112 ] I / Z  

where 

(12) 

where 

6 = ( T - T u / ( T , - T u )  (13) 

and T, is the phase transition temperature. 
The dependences of the interphase houndaly width A and velocity v on the 

dimensionless temperature 6 are shown in figures 1 and 2. These expressions are 
different from ones obtained for the overdamped case (Gordon 1983), in which for 
(pq2/2 << 1) we obtain 

(14) 
A = :{D/a'(T,-Tu)[(1-36/8)+(1-36/4) 112 ] 112 ) 

and 

v = qD'/'. 

h. - 1  
jT. 

I , 1 ,  6 
b 
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Figure 1. me Iemperature dependence of the 
interphase boundary width A. The width is given in 
units of i [D/a ' (T , -  as a function of the 
dimensionless lemperature 6 = (T  - To)/(T, - 
To). 

Figure 2 The lemperature dependence of the 
intelphase boundary velocity U. ?he velocity is 
presented in units of 2T[Da'(Tc - To)]'/2 as a 
function of the dimensionless temperature 6 = 
(T  - To)/(Tc - TO). 
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Figure 3. A mmparison of Ihe lemperature Pigum 4 A comparison of lhe temperature 
dependences of the interphase width for the dependence of the interphase velocity for the 
overdamped case and the general one (lhick curve). overdamped (curve 1) and general (cuwe 2) cases. 

For a comparison we plot the temperature dependences of the interphase 
boundary width and velocity for the overdamped and general cases. In figure 3 
it is seen that the width in the general situation (equation (10)) (the thick full curve) 
is more narrow than for the overdamped case and its temperature increase is less 
sharp. In figure 4 the strong differences behveen the two velocities take place near the 
stability limits of the paraelectric and ferroelectric phases. The temperature growth 
of the velocity in the general case (equation (11)) (curve 2) is less sharp than for the 
overdamped situation (curve 1). 

Solution (8) was also derived for non-linear lattices with dissipation by Gordon 
and Genossar (1984) and by Tikeno and Kisoda (1988) (stable, selfsustained lattice 
kinks intrinsic to the dissipated lattice system). Gordon and Genossar (1984) took into 
account the inertia effects for different types of non-linear lattices. This solution is a 
kink-type solitaly wave which presents the interphase boundary separating paraelectric 
and ferroelectric phases. It describes the propagation of the interphase boundary 
leading to the phase transition. 

We shall consider the dynamic aspects of the phase transition as a growth in 
the presence of an applied magnetic field H. RI study the magnetic-field-induced 
dynamics of the interphase boundary we add the terms containing the magnetic field 
influence to the free-energy density (Wagner and Bauerle 1981). Then dynamic 
equations (6) and (7) are given as follows: 

2 0  azplaZz - p a 2 ~ / a t z -  (i/r) ap/a t  - aP+ bP3 - C P ~  - ~ P H ~ -  hPH4 = o 
(16) 

and 

2 r ( D - p v Z / 2 ) d Z P l d s Z + u d P / d s - r ( a P -  bP3+cPS+gPHZ+ h P H 4 )  = O .  

(17) 

In this case (at T = Tc, i.e. for 6 = 1) the interphase boundary has the width 

A = y [ D / ( l +  p ~ ~ / 2 ) ] ” ~  

B 
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where 

I= [ r 6 / ( 6 ~ ) ' / ~ ] [ 1 + B - ( l -  L?)'lZ]/[(5- B) /4+(1-  B)'/2]'/2 (19) 

(20) Y = [(6c)'lZ/6][(5 - B)/4 + (1 - E )  112 ] -112 

E = (16c/bZ)(gHZ+ h H 4 )  (21) 

and moves with the velocity 

v = z [ D / (  1 + pr2/2)]'IZ. (22) 

According to Ginzburg (1%0), D o( dZ,  where d is the lattice parameter. Since the 
lattice parameter d is not changed under the influence of the applied magnetic field, 
coefficient D is independent of the magnetic field strength. The transport coefficient 
r does not include the dependence of the phase transition temperature (Landau and 
Khalatnikov 1954). For this reason we assume that the magnetic field dependence of 
r is negligible. 

Figures 5 and 6 show the magnetic field dependences of the width A and velocity 
ZI for EtaTiO,. Here g = .'a and h = a'p, a' = 6.7 x K-* (Grindlay 1970) 
where a = 6.27 x kTW2 (Wagner and Bauerle 1981), /3 = 6.28 x lo-' kT-4  
(Wagner and BBuerle 1981). We use 6 = 9.7 x 108 MKS (Gril:dlay 1970) and 
c = 3 . 9 ~  IO'" MKS (Grindlay 1970); the magnetic field strength is given in Rsla 0. 
For strong damping ( p x z / 2  << 1) we have 

A = yD'/' (23) 

and 

v = zD' / ' .  (24) 

Figure 5. The magnetic field dependence of the 
inletphase boundary A lor BaTiO3. The width is 
given in units of (6Dc)'l2/b.  

0.2 o.4.;I 0 5 10 15 2 0  1 5  3 0  

Figure 6. The magnetic field dependence of the 
interphase boundary velocity v for BaTiO,. The 
velocity is presented in units of r b(D/6c)'l2.  
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There is no significant difference between the magnetic field dependence of the 
interphase boundary velocity for the general and the overdamped cases (equation 
(24)), while the width of the interphase boundary gives a cutve with a maximum 
(figure 9, when the magnetic field increases. In the overdamped case the width is 
widened when the applied magnetic field increases (equation (23)). The inertia effect 
hinders the growth of the interphase width and leads to its decrease. 

An analogous consideration of the phase transition kinetics can be carried out for 
the Kittel model of antiferroelectricity. As was shown by Dec and Yurkevich (1990), 
the interphase boundary of the Kittel antiferroelectric may also be expressed as a 
kink solution (8) of the time-dependent Ginzburg-Landau equation. Consequently, 
the above presented results may be applied to antiferroelectrics. 

Since the moving of the interphase boundaly is related to the growth of 
ferroelectric and antifemelectric crystals, the ma,qnetic field effect a n  he wed to 
govern the growth processes. 
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